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LOBE AREA IN AllIABATIC HAMILTONIAN SYSTEMS

b~. Tasso J. J;aper and Stephen \Viggins

104-44 California Institute of Techno~ogy
Pasadena, CA 91125

(818)-356-4127
and

Center for Nonlinear Studies. LANL

Abstract We estatlish an analytically computable formula, baaed on the adiabatic Melnikov function,

for lobe area in one-degree-of-freedom Hami]tonian systems depending on a parameter which varies slowly

in time. We illustrate this lobe area result on a slowIy parametrically forced pendulum, a paradigm

problem for adiabatic chaos, our analysis unites the theory of action from classical mechanics with the

theory of the adiabatic !tIelnikov function from the field of global bifurcatio~ theory,

Keywords: action, lobe area, adiabatic chaos, adiabatic Melnikov function, parametri-
cally forced pendulum.

1 htroduction.

Planar IIaf71iltonian Systwils which depend on a parameter which varies slowly in time

al ;w’ in the context of many p}lysical problems. ‘l?he equations of motion are:

(1)
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separat i..-swept region. The regular region is defined as that area in which t!le adiabatic
*Z

invariant (which is given to leading order by the action of an orbit, see [1]) is conserved.

In this region the frequency of the unperturbed orbits is bounded away from zero for all

\’alues of the parameter. Furthermore, in the special case that the Hamiltonian depends

periodically on z, the extension of KANI theory given in [2] guarantees that most pcrio{i;c

orbits of the planar systems which are sufficiently far away from any frozen separatrices

survive as invariant, tori on which the !,he flow is quasiperiodic when the parameter is

allowed to vary slowly in time.

The complement of the regular region is the so-called separhtrix-swept region. This

region is defined as that area in which the unperturbed motion has a zero frequency for

some value of the parameter. The separatrix-swept region has recently received a lot of

attention. See for example [3], [4], [5], [6], [7], and [8], The phenomenon of separatrix-

crossing occurs in this (7( I)-sized region [4], orbits may evolve chaotically in the sense

of the Smale-Birkhoff Hornoclinic Theorem if H depends periodically cm : [6], and th~

structure of the 0( 1) “chaotic sea” “In periodic problems is very rich [’7].

The organizing structures in the separatrix-swept region arc thr stable and uns[ al~lv

manifolds of hyperbolic orbits. The case which is of interest is when these maniffdds

intersect each other. For example, if the hyperhol; ,’ orbit is periodic m q~msipmiodir in

t imc, then its stable and unstable manifolds intmsect inl~nitrly ma,:y times and form ‘1

Immoc]inic (or het.eroclinic) tangh=, Problems in which there are only a finilc nunllwr of



also for many applications. In this paper, we establish a general exact lobe area formula

as well as a closed form approximation, which is derived for arbitrary lobe shape, for (1)

and discuss some of its physical consequences.

\Ve first discuss the special case in which the Hamiltonian depends periodically on

the slow] y-varying parameter in Section 2. We relate our results to those obtained in

[7]. Then in Section 3 we discuss the general case, in which H can have quite general

dependence on z. We conclude this paper with some observations about which homoclinic

orbits correspond to minima of the action and which correspond to minimaxs,

2 z-Periodic Hamiltonians.

In this section we establish analytically the observation that, when H depends periodi-

cally on :, the area of a lobe in ( 1) is asymptotic (as c + O) to A,, which is the area in

the p - q plane between the two separatrices of the frozen in time system which rnclose

the maximum and minimum areas,

2.1 Asymptotic Lobe Area.

\VP assume that the frozen in time system has a rurv~ of hypt=rbolic fixed points. which



it as well. From the persistence theory of hyperbolic invariant manifolds, we know that

this curve of fixed points ( an invariant manifold) becomes a hyperbolic periodic orbit,

Ye, when E # 0. We also know that y, has two-dim~~nsional stable and unstable manifolds

(see [1l]), denoted by W’s(yf) and WC’(yC) and on which orbits approach and leave

7,, respectively, exponentially. Furthermore, from the theory of the adiabatic Nlelnikov

function [9], we know that if the adiabatic Melnikov function is periodic in z and has an

in firite set of simple zerom, then one branch of each of }Vs(~C) and W“(yC) intersel:t each

other along infinitely many curves in which the orbits homoclinic to y, lie (see Figure 1).

The points at which these homoclinic orbits intersect the Poincar6 surface of section are

called primary inters~t ion points [12].

Let P and Q be the orbits of the two adjacent primary intersection points P ?nd Q

which detine the lobe Lp~ on the instantaneous p - q plane at time time tz, denoted by

I_It,. The area of LPQ is given exactly by the difference

A =
/

pdq - Halt.
P-Q

Since there does not appear to be a way to compute A

in the actions of P and Q [13]:

I a)
\- )

in closed form from (2), we give

an approxinlate expression which may be eveluated analytically in two ways and then

show that the error n;ade in this approximation vanishes asymptotically at le~~t as fast

M c when f. + 0,

M l’z~ be the scparatrix of the frozen in tiitw system which rncloscs the ma~imuli)

arra and !’z’ be the srparatrix which cnclos~ tlw millinmm arm+. ‘1’lwapproximate’ I(JIw

iirrii is givf’n by the flux of tlm pmlllrlml vvrtor lif4fl through the piwo of tlw Ilnpml 111’INWI

Imilmclillic man!fold with : nwtrictml to lift in tlw int.mvd [Z(), Zl], ‘;(K*Figure 2:

/J,4(,= ~dp.+(11/-(1IIA (It, (:1)

‘I’llis illlrgrhl (’all Iw vvhlll;itml in (’](JW[] forri] I) WAIIW t II(* inl(’gral~tl i~ rvnlllhlv(l 011 I Ilf’
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known solutions lying on S. Thesurface integral irl(3)may rewritten =a line integral

around the boundary of X by Stokws’ Theorem:

A-J = ~% @7- f+dt)– ~z,(pdq - Halt). (4)

Then, observing that dt = O on the

along 17~ and I’zl, we arrive at

instantaneous p - q plane llta, and hence dt = O also

(.5)

A second way in which (4) may be evaluated analytically is in terms of the adiabatic

Nlelnikov function MA(z), which is defined as

(6)

where s is the time variable of the fro’zen system, and (p~(s), qf(s), z) is the solution of

the frozen in time system on r’, see [14] and [6], A computationally more convenient

form of .%#A(z ) ca~ be derived from the definition using integration by parts on s and

realizing that the boundary terms vanish:

whrrc {II, ~ } dcnotea the Poisson Bracket of }/ and ~ with rrspcct to (p, q). \l’e

rrvnark Ihat the integrand maybe writ.tw-i as {H, ~}.

In [8], we perform this second evaluation of Ao, I)y clianging crmrdillatrw from t Iw

Imir (p, q) and from ttw pair ( //, t) to tlw pair (,~,~), whirl] are good rmmlinatm for i !w

Iloilloclillic” nlanifold. \Vc obthin:

(N)
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Now, we add ~~. (~(~), Z) and subtract U~z (Y(s), ~), which are equal since the other

partial derivatives at the hyperbolic fixed point vanish, from the irltegrand and use the

‘i(?(z), z) for all s to arrive at:fact that ~(p~(s).qd(s),z) = ~Z

Acl = J : ftl~(:)cfz. (9)

Finally, we show that the error made in the approximation vanishes at least as fast

as c. We do this by evaluating the difference between the exact and the approximate

lobe areas.

Gmmetrically, this difference is given by the flux of (1) through any two surfaces

which connect Z and W~J(~c) when z < :2 = Ctz and Ws(yC) when z > 22. This can be

seen from the following picture: Together with Z and pieces of the stable and unstable

manifolds of the hyperbolic periodic orbit (lVs(~C) when z s Zz and W“(7C) when z z 22

where za = Ctz and we are looking at the instantaneous plane H[2), the two conn~ting

surfaces form m infinitely long tube whose cross-section in the p - q plane is four-sided

when z E [2., 21] and three-sided for z outside this interval with a hole in its side on the

reference plane 1111which is exactly the lobe LPQ. We label the Conn=th surfaces by

flp and fl~ in Figure 3. In [8] we show that, as z + ●m, the cross-sectional area of the

tube vanishes exponentially. ‘rhcrefore, the net flux through all of the sides of the tube

is equal to the area of the “hole”, i.e. the area of the lobe LP~. Now, since there is no

!lUX through eithe, Ii/s(y,) or @’(y,), the area of the ‘hole” is equa] to flux throllgh

t’,4, which is given by our approximation Ao, plu~ the flux through the two ccmnrcting

sllrfaccs, Thug, it remains only to drtmmine the flux through the connecting surfacm

(IT wI(1 fl~, In [H], we prove that this flux, i.e., the error in our approximation. i:: o(~).

shout the asytnptotic behavior of the k)lJf’ arra in

: is rstahlishrd analytically. AH t.lM ar~’a WICIOWWI

(i



by the frozen separatrices l’z -Increases, the region inside the tw,moclinic tangle ingests

phase space area, and vice versa, as the area enclosed decreases, the inner region ejects

phase space area. Hence, during the z-interval in which the area enclosed by the frozen

separatrices increases from its minimum value to its maximum value, an area approxi-

ma~cly equal to A, enters the region inside the homoclinic tangle. Similarly, during the

z-interval in which the area enclosed by the frozen separat rices decreases from its max-

imum value to its minimum value, an area approximately equal to A, leaves the :egion

inside the homoclinic tangle. Thus, we expect the lobe area to be given by A, to leading

order since phase space area enters and exits the region inside the homoclinic tangle only

through the turnstile lobes.

2.2 The Adiabatic Pendulum.

The results of the above theorem is nicely illustrated on the pendulum with slowly varying

base support, which is governed by the Hamiltonian

H=: –(1 –ycosz)cosq, (lo)

where z .= ~ and y E (O, 1). For every value of z E [0, 21r), the autonomous frozen in time

system system has hyperbolic fixed points at ( kr, O), for all k E Z. We look at ( –r, O)

and (r, O). These two points are connected to each other by upper and lower separatrices

parametrized by

(p:(s), q:(s)) = (+2~-sech( ~--s), +2arcsiu(tanh /-s)) ,

whrre .Y is the time variable for ( 1 ) when c = 0. For

upper half plane p > 0. The picture for the lower

convenience we consider only the

half plane is obtaint=d by a ISOO
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rotation. From the definition, we c~mpute

/

+-
MA(Z) = y sp~(s) sin(q~(s)) sinzds

-OJ
47 sin z

= ~“
(11)

Thus we see that ~fA has an infinite number of simple zeroes, and we know that

the stable and unstable manifolds of 7. intersect t Lansversely in an infinite sequence of

curves for c sufficient 1y small. The Poincar6 maps for Z. = O, -y = 0.75, and various

values of c are shown in Figure 5. We remark that the fact that the zeroes of MA are

an 0(~) time-of-flight apart implies that all, except for possibly one, of the pip’s ar,~

exponentially close to y~. We also remark that the three regular regions sufficiently far

inside and outside the homoclinic tangle are filled with KAM tori,

From (11 ) we compute

= AS (12)

where As is precisely the difference in the areas enclosed by the separatrices of the un-

perturbed system in the upper half plane corrmponding to z = T and z = O, respectively.

See Figure 4. Finally, the general result demonstrated above that A = AS+ (9(E) is what

we observe numerically (see Table 1).



3 Hamiltonians with General z-Dependence.

The three results for z-periodic Hamiltonians also hold when H has quite general depen-

dence on z. We assume that H is at least C3 with respect to z. First, we know that a

curve of uniformly hyperbolic fixed points which can be written as a graph over the z

iariable persists as a hyperbolic orbit with stable and unstable manifolds when c # O.

The second result which carries over to the general case is the exact lobe area formula.

In [8], we give an alternative derivation of (2) which does not depend on the valor field

having a recurrent sdion, as (1) has when H depends periodically on z. Finally, the

main result about the asymptotic lobe area, established in the previous section, holds in

the general case as well, and hence A. as given by either (3) or (4) is the lobe area to

within an asymptotic error of O(C). In fact, the derivation of the result given in [8] does

not depend on H being periodic in z, only that H is at leaat C3 in z.

The main result represents a generalization of the existing techniques to measure the

areas of lobes. The two main techniques to me~ure the lobe area developed to date apply

only to two-dimensional maps or to vector fields which have a recurrent planar section.

The first technique involves computing the action of the two adjacent intersection orbits

which define the lobe [13]. However, this technique does not appear to lead to a closed

form expression for the area. As stated above (2) can be derived for the general case and

a closed-form approximation can be made. The second technique is a direct geometric

measurement involving the regular Melnikov function [12]. This technique can only be

used if the shape of the lobe is such that the pieces of the stable and unstable manifolds

which define it can be written as graphs over the unperturbed separatrix. IIence, this

dirmt technique cannot

satisfy this property, see

b~ ~sed in adiabatic systems where the lobe shape does not

Figure 5. As mentioned before, our results are independent of

9



the shape of the lobe, and thus overcome the limitation inherent in the second technique.

3.1 A Maximal Property for Lobe Area.

The only observation which does not carry over directly from the special periodic case

to the general cue is that A. = A,, because A, is only defined for z-periodic H. Never

the less, this observation does have a counterpart in the general case. We now establish

a maximal property for the lobe area which applies to the general case and reduces to

AO = A, in the special case.

In particular, we show that the zeroes of the adiabatic Melnikov function occur in

such a way that the area .40 (determined by the frozen separat rices I’~ and I’zl ) is locally

the largest possible. We take X(zil z) to be the pi~e of r with the variable z restricted

to the interval [zi, z], where zi is a constant. Second, we define

A(zi, z) =
1!

dp A dq,
E(S~,2)

the function:

(13)

which is the area of the projection of Z(zil z) on a slice IIz. By a calculation similar to

that done in the previous section, the function A can also be written as:

which is the integral of ~fA(z) over x(~i, z). NOW,

(11)

(1.5)

IIcncc we know that 20 and 21 are simple zeroes of ~(zi, z), because ZO a~:l ZI arr

simple zcrom of J~~A(z ). Next we remark that because ~(z) has different signs at ~.

and 21,

(16)
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arc of opposite signs, as well. Thus the adiabatic Melnikov function picks out in a natural

fashion a pair of adjacent local extremas, one minimum and one maximum, of A( ~i, z) and

the local extremal frozen separatricea T=” (maximal) and T=’ (minimal), r~pectively.

\Ve remark that in the special case discussed in Section 2, we get A(Z1, 2.) = A,, as

stated there.

3.2 Action Minimizing and Minimax Hornoclinic Orbits.

We conclude this section with the following remark. The orbits of (1) homoclinic to

y, are of two types. One corresponds to a minimum of the action, and the other type

corresponds to a minimax (i. e., local maximum) of the action, see [15]. The observation

made above about /dA determines this correspondence.

As c + O, the homoclinic orbit Q limits on the separatrix f’z’. Therefore, because

I’z’ is a local minimum of A(zi, z), Q is a local minimum of the action. Similarly, as

c + O, the homoclinic orbit ~ limits on the separatrix 1’%. Therefore, because rzo

is a local maximum of A(zi, z), P is a local maximum of the action. In other words,

the homoclinic orbit corresponding to z such that * > 0 and JVA(5) = O is a

local minimum, and the homoclinic orbit corresponding to 2 such that w <0 and

hfA(~) = O is a local maximum. We remark that a similar correspomlcnce, bctwcm the

well-known Melnikov function for small-amplitude perturbations (see [16]) am-l the type

(either action-minimizing or minlmax) of the homoclinic orbit, must also apply ill tlw

case of small ampiitude perturbations whmc the geometric identification of the mininlllrll

and the rninimax homoclinic orbits is not M r+=ar as it is for adiabatic problwns.
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Figure Captions

1, Ccometry of(l) intheextended p-q- zphasespace with O<c< 1.

2. The section, E. of the hornoclinic manifold r used to get the approximation, AO.

3. The error made in the approximation is given by the flux of the perturbed vcrtor firld

through the connecting surfaces flP and flQ.

4. I;npcrturbcd pendulum phase portrait, with 7 = 0.7.

.5. Sequence of Poincar6 maps which show that lobes hecom(~ larger as ~ gets sllmllvr.

‘I”i)cexample is the adiabatic pendulllm of Section 6 with y = 0.75. a: ~ = ~. l): ~ = ~.
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epsilon lobe axes
y = 0.5 2r/15 3.74
7 = 0.5 21r/18 3.84
y = 0.5 2T/2rl 3.&3
y = 0.5 2r/25 3.94
y = 0.5 2r/30 3.97

L y = 0.5 0 AO A, = 4.14=

Tabk 1: Lobe area W. c bed on a mmiZriceJ trapesoidd rule ew.mintegration.
The lobe arm incre~ M c decrenaa.

Nuuyr&al mlutica of (5.1), done using ● fourth order oymplectic integrator.

.
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